

Features

- Single-Supply Operation from +3V ~ +36V
- Low Offset Voltage: 5mV (Max)
- Gain-Bandwidth Product: 1MHz (Typ)
- Quiescent Current: 700µA per Amplifier (Typ)
- Dual-Supply Operation from $\pm 1.5V \sim \pm 18V$
- Low Input Bias Current: 20nA (Typ)
- Large Output Voltage Swing:0V to Vcc-1.5V
- Operating Temperature: -40°C ~ +125°C
- Small Package: BL324 Available in SOP-14 Package

General Description

BL324 operates from a single 3V to 36V supply or dual $\pm 1.5V$ to $\pm 18V$ supplies ,The BL324 have a high gain-bandwidth product of 1MHz, a slew rate of 0.2V/µs, and a quiescent current of 700µA/amplifier at 5V. The BL324 is designed to provide optimal performance in low voltage and low noise systems. The maximum input offset voltage is 5mV for BL324. BL324 Quad is available in Green SOP-14 package.

Applications

- Motor Control
- Battery Management Solution
- Temperature Sensors or Controllers
- Digital Multimeter
- Blu-ray Players and Home Theaters

Package/Ordering Information

MODEL	CHANNEL	ORDER NUMBER	PACKAGE DESCRIPTION	PACKAGE OPTION	
BL324	Quad	BL324	SOP-14	Tape and Reel,2500	

Pin Configuration

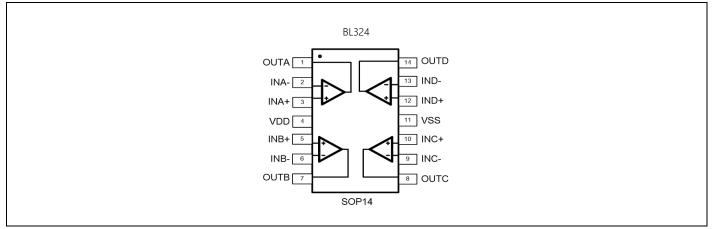


Figure 1. Pin Assignment Diagram

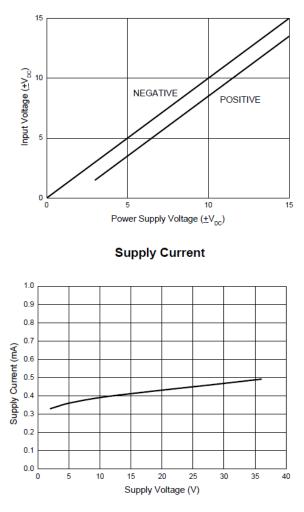
Absolute Maximum Ratings

Condition	Symbol	Max
Power Supply Voltage	Vcc	$\pm 20 V$ or $36 V$
Differential input voltage	VI(DIFF)	36V
Input Voltage	Vı	-0.3V~36V
Operating Temperature Range	Topr	-40°C ~+125°C
Storage Temperature Range	Tstg	-65°C ~+150°C

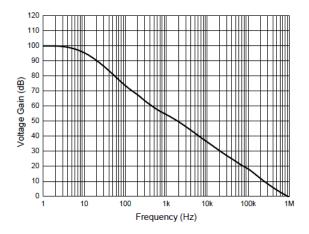
Note: Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

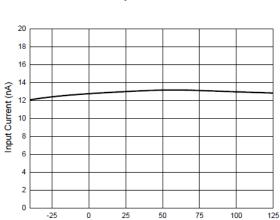
_

Electrical Characteristics

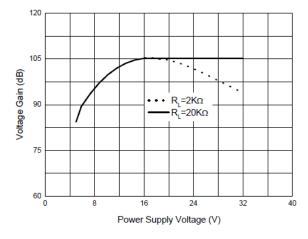

(At Vs = +15V, T_A=25°C, unless otherwise noted.)

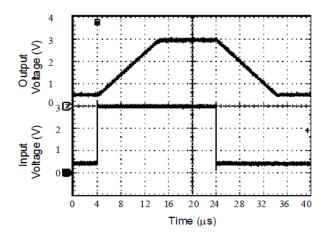
				BL324			
PARAMETER	SYMBOL	CONDITIONS	ТҮР	MIN/MAX OVER TEMPERATU		MPERATURE	
			+25℃	+25℃	UNITS	MIN/MAX	
INPUT CHARACTERISTICS							
Input Offset Voltage	Vos	$V_{CM} = V_S/2$	0.4	5	mV	MAX	
Input Bias Current	IB		20		nA	TYP	
Input Offset Current	I _{OS}		5		nA	TYP	
Common-Mode Voltage Range	V _{CM}	$V_S = 5.5V$	-0.1 to +4		V	TYP	
Common-Mode Rejection Ratio	CMRR	$V_{CM} = 0V$ to Vs-1.5V	70	60	dB	MIN	
Open-Loop Voltage Gain	Aol	R_L = 5k Ω , V_O = 1V to 11V	100	85	dB	MIN	
Input Offset Voltage Drift	$\Delta V_{OS}/\Delta_T$		7		µV/℃	TYP	
OUTPUT CHARACTERISTICS							
	Vон	$R_L = 2k\Omega$	11		V	MIN	
Output Valtage Stuing from Deil	Vol	$R_L = 2k\Omega$	5	20	mV	MAX	
Output Voltage Swing from Rail	V _{OH}	$R_L = 10k\Omega$	12	13	V	MIN	
	Vol	R _L = 10kΩ	5	20	mV	MAX	
	ISOURCE	P = 100 to V/2	40	60		MAX	
Output Current	Isink	$R_L = 10\Omega$ to $V_S/2$	40	60	mA		
POWER SUPPLY							
Operating Voltage Bange				3	V	MIN	
Operating Voltage Range				36	V	MAX	
Power Supply Rejection Ratio	PSRR	$V_{S} = +5V \text{ to } +36V, V_{CM} = +0.5V$	100	70	dB	MIN	
Quiescent Current / Amplifier	lα	V _S = 36V, RL=∞	0.7	3	mA	MAX	
DYNAMIC PERFORMANCE		1	1				
Gain-Bandwidth Product	GBP		1		MHz	TYP	
Slew Rate	SR	G = +1, 2V Output Step	0.2		V/µs	TYP	




Typical Performance characteristics

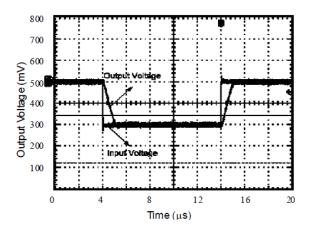
Input Voltage Range


Open Loop Frequency Response

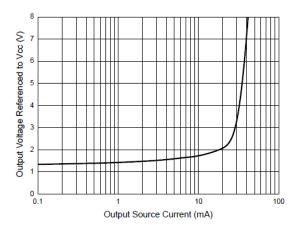


Temperature (°C)

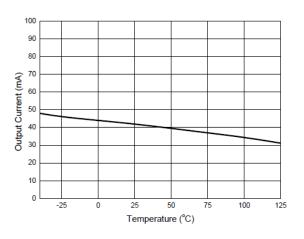
Voltage Follower Pulse Response

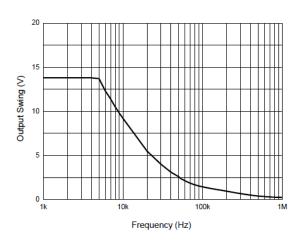


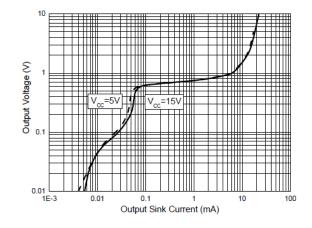
Input Current



Typical Performance characteristics


Voltage Follower Pulse Response (Small Signal)


Output Characteristics: Current Sourcing


Current Limiting

Large Signal Frequency Response

Output Characteristics: Current Sinking

Typical Application Circuits

Differential amplifier

The differential amplifier allows the subtraction of two input voltages or cancellation of a signal common the two inputs. It is useful as a computational amplifier in making a differential to single-end conversion or in rejecting a common mode signal. Figure 1. shown the differential amplifier using BL324.

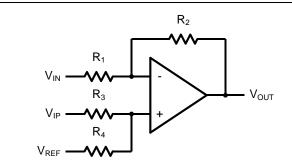


Figure 1. Differential Amplifier

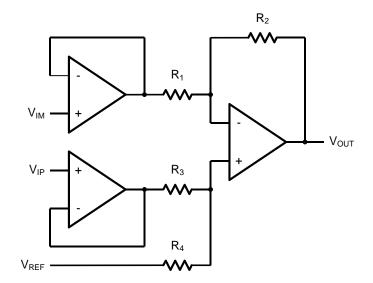
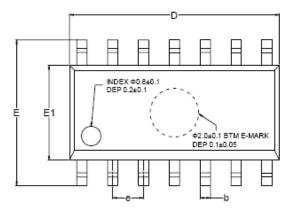
$$V_{\text{OUT}} = (\frac{R_1 + R_2}{R_3 + R_4}) \frac{R_4}{R_1} V_{\text{IN}} - \frac{R_2}{R_1} V_{\text{IP}} + (\frac{R_1 + R_2}{R_3 + R_4}) \frac{R_3}{R_1} V_{\text{REF}}$$

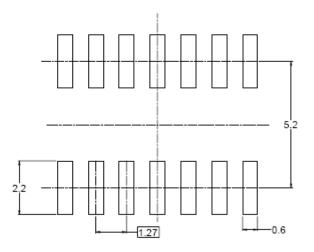
If the resistor ratios are equal (i.e. $R_1=R_3$ and $R_2=R_4$), then

$$V_{\rm OUT} = \frac{R_2}{R_1} (V_{\rm IP} - V_{\rm IN}) + V_{\rm REF}$$

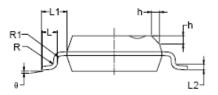
Instrumentation Amplifier

The triple BL324 can be used to build a three-op-amp instrumentation amplifier as shown in Figure 2. The amplifier in Figure 2 is a high input impedance differential amplifier with gain of R2/R1. The two differential voltage followers assure the high input impedance of the amplifier.


Figure 2. Instrument Amplifier

Package Information


SOP-14

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	Dimensions In Millimeters			Dimensions In Inches		
Symbol	MIN	MOD	MAX	MIN	MOD	MAX
A	1.35		1.75	0.053		0.069
A1	0.10		0.25	0.004		0.010
A2	1.25		1.65	0.049		0.065
A3	0.55		0.75	0.022		0.030
b	0.36		0.49	0.014		0.019
D	8.53		8.73	0.336		0.344
E	5.80		6.20	0.228		0.244
E1	3.80		4.00	0.150		0.157
e		1.27 BSC			0.050 BSC	
L	0.45		0.80	0.018		0.032
L1	1.04 REF			0.040 REF		
L2	0.25 BSC			0.01 BSC		
R	0.07			0.003		
R1	0.07			0.003		
h	0.30		0.50	0.012		0.020
θ	0°		8°	0°		8°